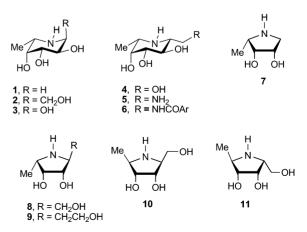
Synthesis of novel pyrrolidine 3,4-diol derivatives as inhibitors of α -L-fucosidases†

Elena Moreno-Clavijo,^a Ana T. Carmona,*^a Yolanda Vera-Ayoso,^a Antonio J. Moreno-Vargas,^a Claudia Bello,^b Pierre Vogel^b and Inmaculada Robina*^a

Received 7th November 2008, Accepted 17th December 2008 First published as an Advance Article on the web 3rd February 2009 DOI: 10.1039/b819867e


The stereoselective synthesis of new 3,4-dihydroxypyrrolidine derivatives starting from D-mannose, D-ribose and L-fucose is presented. Two synthetic strategies employing organometallic addition to hemiacetalic sugars followed by selective nucleophilic displacement or conjugate addition of ammonia to conjugate aldonic esters as key steps, are used. The new compounds were assayed for their inhibitory activity towards 13 commercially available glycosidases. Compounds that share the absolute configuration at C(2,3,4,5) of L-fucopyranosides and incorporate aromatic moieties are potent and selective inhibitors of α -L-fucosidases in the nM range.

Introduction

The role of glycosidases and glycosyltransferases in the biosynthesis of glycoproteins1 and their control in recognition processes including cell/cell, cell/invader and inflammation,² has stimulated the development of their inhibitors. Many of them have shown great medicinal value as exemplified by the treatment of the influenza virus, non-insulin-dependent diabetes, or genetic disorders.^{3,4} In particular α-L-fucosidases are enzymes that catalyze the hydrolysis of α -L-fucose units located on the cell surface oligosaccharides⁵ and participate in a variety of biological processes.⁶ The accumulation of fucose-containing glycoconjugates, because of the absence or deficiency of α-L-fucosidases leads to pathological modifications of normal cell behaviour such as inflammation,7 tumor cell growth and formation of metastases,8 neurovisceral disorders and cystic fibrosis.9 α-L-Fucosidase activity is a diagnostic factor for several carcinomas.10 α-L-fucosidases have been found in human seminal plasma and in the membranes of human sperm cells and facilitate sperm transport and sperm egg-interactions. Inhibitors of these enzymes can have anticonceptive properties.¹¹ Inhibitors of α-Lfucosidases have been also found to inhibit the cytophatic effect of HIV and reduce infection.4

Among the most powerful α -L-fucosidase inhibitors are derivatives of 1,5-dideoxy-1,5-iminoalditols, such as 1-deoxy-L-fuconojirimycin 1,¹² homo-L-fuconojirimycin 2¹³ and L-fuconojirimycin (5-amino-5-deoxy-L-fucose) 3.¹⁴ 1,4-Dideoxy-1,4-iminoalditols are also an important class of glycosidase inhibitors, although their higher conformational flexibility reduces, in some instances, their selectivity.¹⁵

Iminoalditols having a carbon chain linked to the carbon adjacent to nitrogen, the so-called homoazasugars (aza-C-glycosides) have received special importance due to their stability towards chemical and enzymatic degradation, at the same time as retaining the same type of biological activity.16 Homoazasugars bearing aminomethyl(ethyl), hydroxymethyl or 1,2-dihydroxyethylene groups as side chains, have been recently described.¹⁷ With regard to their enzymatic inhibitory activity it has been reported that some homoanalogues of 1,5-dideoxy-1,5-iminoalditol derivatives are more active than the parent compounds. 18 Thus, β-homoanalogues 4, 5 and 6¹⁹ have been described as potent α-L-fucosidase inhibitors in the nM range. Homoanalogues of 1,4-dideoxy-1,4-iminoalditol 7²⁰ such as 8 and 9 are also potent inhibitors of α -L-fucosidases (8, K_i 1.4 μ M), 21,22 (9, K_i 8 nM). 23 Compounds with an R configuration at C-5 ($10^{24,25}$ and $11^{22,24,26}$) are inhibitors in the µM range (Fig. 1). Compounds with a spyrocyclopropyl moiety at C-5 have also been described as moderate inhibitors of α-L-fucosidases.²⁷ It has also been claimed that hydrophobic groups attached to the iminosugar improve their inhibitory activity through unspecific contributions to the binding with the enzyme.²⁸ The incorporation of aromatic moieties to L-fuconojirimycin derivatives increases the inhibitory activity remarkably29 as in

Fig. 1 α-L-Fucosidase inhibitors.

[&]quot;Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, P.O. Box 553, E-41071, Sevilla, Spain. E-mail: anatere@us.es, robina@us.es; Fax: +34954624960; Tel: +34 954557151

^bLaboratory of Glycochemistry and Asymmetric Synthesis, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland. E-mail: pierre.vogel@epfl.ch

[†] Electronic supplementary information (ESI) available: Further biological assays details and copies of ¹H- and ¹³C-NMR spectra for compounds **19–21**, **24b**, **25b**, **39**, **40**, **42–47**, **49**,**50**,**54**, **59–61** and **63–66**. See DOI: 10.1039/b819867e

the case of amide 6^{30} with inhibitory activity in the pM range.

We and other authors have reported that the incorporation of aromatic moieties to the pyrrolidine framework greatly improves the activity and selectivity towards glycosidases. 31,32 In this regard, we have found that compounds 13 to 17 are better and more selective inhibitors than simple meso-pyrrolidine-3,4-diol (12) (Fig. 2). Recent work on the search of anti-cancer agents has shown that α -mannosidase inhibitors such as 13 have low cell membrane permeability and must be esterified to generate compounds with anti-cancer activity.³³ This suggests that less polar compounds than fuconojirimycin analogue 6 might be required to construct α-fucosidase inhibitors capable of penetrating cells. Thus, we have decided to explore the use of pyrrolidine-3,4-diol derivatives as templates for the creation of effective α -L-fucosidase inhibitors that could play a part in the development of potential drugs. With that aim a variety of 1,4-imino-C-heterocycles, aryl aminoalkyl pyrrolidines and related homoanalogues 18-21 were prepared by diversity oriented syntheses containing substitution or modification at C-2 and C-5 of the pyrrolidine framework.³⁴ It is believed that derivatives 18-21 with two hydroxyl groups should penetrate the cells more readily than compound 6 which has three hydroxyl groups. In addition, compound 18c which bears a hydroxyethyl group on the pyrrolidine moiety and L-fuco configuration on C(2,3,4,5) is an interesting C-5 tethered imino-C-benzimidazole of interest for the preparation of affinity ligands for the purification of α-L-fucosidases.³⁵

Our synthetic strategies start from isopropylidene protected hemiacetalic sugars (D-mannose, D-ribose and L-fucose) (Scheme 1). For the synthesis of compounds 18a,b and 20a,b the key intermediate is carbaldehyde 22 which is prepared by addition of methylmagnesium chloride as the key step, mesylation, chemoselective $S_N 2$ and cyclization followed by acetal deprotection and glycol cleavage (pathway A). Compounds 18c, 19a, 19b, 21a and 21b are prepared from ester derivatives 23, 24 and 25 as

Fig. 2 α-L-Fucosidase inhibitors containing aromatic moieties.

key intermediates, respectively. These intermediates are obtained through conjugate addition of ammonia to unsaturated aldonic esters derived by Wittig reaction from sugar hemiacetals and tandem cyclization (pathway B).

Results and discussion

Pathway A implies reaction of methylmagnesium chloride with commercially available D-mannose diacetonide which afforded

Scheme 1 Synthetic strategies.

a 1:1 mixture of diastereoisomeric diols (2R)-26 and (2S)-26 in 95% yield (Scheme 2). Standard mesylation of the diols provided a 1:1 mixture of dimesylates (2R)-27 and (2S)-27 in 75% yield, that after treatment with Me₃SiN₃ and Bu₄NF in DMF afforded a 3:1 mixture of azides (2S)-28 and (2R)-28 in 55% yield. This result indicates that the chemoselective S_N2 displacement of the mesyloxy group at C-2 of 27 is somehow faster with (2R)-27 than with (2S)-27.34


Scheme 2 Reagents and conditions: (a) MeMgCl, THF, r.t., 95%; (b) MsCl, pyridine, DMAP, 75%; (c) TMSN₃ (4 eq.)/TBAF (4 eq.), DMF, 90 °C, 4.5 h, 55% (74% from converted substrate); (d) (1) H₂, Pd/C, MeOH; (2) MeOH, DBU, 99% (1+2); (e) (1) CbzCl, NaHCO₃, EtOH/H₂O (1/1); (2) Zn(NO₃)₂.6H₂O, MeCN, 50 °C; (3) Flash chromatography; 58% (1+2+3); (f) NaIO₄, THF-H₂O; (g) NaClO₂, KH₂PO₄, Bu^tOH-H₂O; (h) (1) o-phenylenediamine, PyBOP, DIPEA, DMF, 65%; (2) AcOH, 50 °C, 100%; (i) (1) THF:HCl 1 M 1:1; (2) H₂, Pd/C, MeOH; 87% (1+2).

Catalytic hydrogenation of azides 28 gave a 3:1 mixture of primary amines that were not isolated but treated directly with DBU in MeOH. This promoted the intramolecular displacement

of the mesyloxy group at C-5 giving a 3:1 mixture of (5S)-29 and (5R)-29 in quantitative yield. Amine protection as benzylcarbamate followed by selective hydrolysis of the least sterically hindered acetonides (Zn(NO₃)₂, H₂O/MeCN)³⁶ provided a 3:1 mixture of diols 30 and 31 that were readily separated by flash chromatography on silica gel (58% overall yield in three steps). Standard oxidative cleavage of the diols 30 and 31 with NaIO₄ furnished aldehydes 32 (92%) and 34 (100%), respectively.

The structures of the 2.5-dideoxy-2.5-iminoalditol derivatives 30 and 31 were established by their spectral data and the relative configurations confirmed by NOE.34 Oxidation of aldehyde 32 gave the corresponding carboxylic acid 33 (82% yield). Reaction with o-phenylenediamine in the presence of PyBOP and DIPEA and heating in AcOH at 50 °C followed by deprotection under standard conditions yielded benzimidazole derivative 18a (Scheme 2). The same reaction sequence applied to aldehyde 34 provided benzimidazole 18b.

The synthesis of 19a and 19b was carried out following pathway B which starts from known hemiacetal 38 obtained from D-ribose by applying Bols' procedure.37 Reaction of lactol 38 with ethoxycarbonylmethylene triphenylphosphorane in dichloromethane under reflux afforded a mixture of alkenes 39 and 40 in 90% yield and a ratio Z:E = 5.2:1. Mesylation of 39 and 40 followed by treatment with ammonia in ethanol furnished the corresponding pyrrolidines through tandem conjugate additioninternal S_N2 displacement. Starting from Z-alkene 39, pyrrolidine 24a was obtained as unique stereoisomer in 76% overall yield, whereas the same procedure applied to E-alkene 40 afforded a mixture of 24a and 24b in 60% overall yield, and a ratio, 24a:24b = 10:1 (Scheme 3). The structures of 24a and 24b were based on their spectroscopic and analytical data.34

Scheme 3 Reagents and conditions: (a) Ph₃P=CH₂COOEt, CH₂Cl₂ reflux, 90%. (b) (i) MsCl, Py. (ii) NH₃, EtOH, 76% (from **39**), 60% (from **40**).

When a similar synthetic route was applied to L-fucose, pyrrolidines 25a and 25b, epimers at C-6 of 24a and 24b, were obtained. Thus, L-fucose acetonide formation followed by glycol cleavage, basic hydrolysis and neutralization gave lactol 41. Subsequent Wittig olefination afforded alkenes 42 and 43 in 70% yield and a ratio Z:E=1:5 (Scheme 4). The formation of pyrrolidines 25a and 25b from 42 and 43 followed the same stereochemical outcome than for the ribo series and is in accordance to that described for the erythro and manno series.³⁸ Pyrrolidine 25a was obtained as a single diastereoisomer from Z-alkene 42 in 63% overall yield. The same reaction conditions applied to E- alkene 43 afforded a mixture of pyrrolidines 25a and 25b in a ratio 25a:25b = 5:1. Their structures are based on their spectroscopic and analytical data. NOESY spectrum of 25a showed NOEs between proton signals $H3(\delta = 3.44)$ and $H4(\delta = 4.66)$ and $Me-6(\delta = 1.05)$, indicating a cis relationship between H3 and H4 and trans relationship between H3 and H6. In the case of compound 25b the NOESY spectrum showed NOEs between protons $H2a(\delta = 2.7)$, $H4(\delta = 4.29)$ and $H2b(\delta = 2.48)$, and between proton pairs $H3(\delta = 3.41)$ and $H6(\delta = 3.20)$, which indicates a *cis* relative configuration between H3 and H6 and *trans* relative configuration between H3 and H4.

Scheme 4 Reagents and conditions: (a) (i) 2,2-DMP, PTSA. (ii) NaIO₄, H₂O. (iii) NaOH. (iv) HCl, 65% (overall). (b) Ph₃P=CH₂COOEt, toluene, reflux, 70%. (c) (i) MsCl, Py. (ii) NH₃, EtOH, 63% (from 42), 50% (from 43).

The preparation of the benzimidazolyl derivative 19a started from N-Boc protected pyrrolidine 44. Saponification followed by reaction with o-phenylenediamine in the presence of PyBOP and DIPEA afforded amide 45 in 76% yield. Subsequent cyclization and acidic deprotection gave the target compound 19a (Scheme 5).

For the synthesis of the benzimidazolyl epimer 19b, a similar synthetic route was applied but starting from benzyloxycarbonyl carbamate 47. Cyclization of amide 48 in AcOH at 50 °C gave quantitatively protected benzimidazolyl derivative 49. Elimination of the benzyloxycarbonyl and isopropylidene groups by

Scheme 5 Reagents and conditions: (a) Boc₂O, Py, 92%. (b) (i) NaOH, EtOH. (ii) o-phenylenediamine, PyBOP, DIEA, DMF, 76% (for 45), 89% (for 48). (c) AcOH, 50 °C, quant. (for 46 and 49). (d) (i) HCl. (ii) NH₄OH, 64%. (e) CbzCl, EtOH, NaHCO₃, 90%. (f) (i) H₂, Pd/C, MeOH. (ii) HCl, THF, 58%.

hydrogenolysis and acidic treatment gave 19b in 58% overall yield (Scheme 5). However, in some instances, these deprotection steps applied over 49 afforded the unexpected compound 50, isolated as the major product which was fully characterized by its spectral data (see Supporting Information). A possible mechanism for the formation of compounds 19b or 50 is shown in Scheme 6. Nucleophilic attack by a nitrogen of the benzimidazole ring over the carbamate group under acidic conditions followed by hydrogenolysis of the $C\alpha$ -O and $C\alpha'$ -O bonds on intermediate **D**, affords compound 50 with a methylene bridge between pyrrolidine and benzimidazole nitrogens (H α 'a (δ = 5.26, d, $J_{\alpha'a,\alpha'b}$ = 12.6) and $H\alpha'b (\delta = 5.05, d)$.

The synthesis of aminomethyl pyrrolidines 20a and 20b was carried out starting from aldehyde 32. Reductive amination of 32 with aniline provided derivative 51 (75%), which after deprotection under standard conditions, afforded diamine 20a in quantitative

Scheme 6 Proposed mechanism for the formation of 50.

yield. Following a similar synthetic route and using biphenyl-4-amine for the condensation with the aldehyde **32**, derivative **20b** was obtained (Scheme 7).

Scheme 7 Reagents and conditions: (a) ArNH₂, NaBH(AcO)₃, 66–75%. (b) (i) HCl (1M). (ii) H₂, Pd/C, MeOH, quant.

The synthesis of naphthalene-1-amino ethyl pyrrolidine 21a was carried out by the reductive amination of aldehyde 54 with naphthalene-1-amine (85%) followed by acidic deprotection. Carbaldehyde 54 was obtained from 44 by reduction with DIBALH in 74% yield (Scheme 8). Biphenylaminoethyl pyrrolidine 21b was prepared starting from ethyl ester 44. Saponification and reaction with biphenyl-4-amine in the presence of PyBOP and DIPEA gave amide 56 in 71% yield. Reduction with BH₃.SMe₂ afforded diamine 57, from which acidic deprotection gave 21b in 84% overall yield (from 56).

Scheme 8 Reagents and conditions: (a) (i) NaOH, EtOH. (ii) Ar-NH₂, PyBOP, DIEA, DMF, 71%. (b) DIBALH, CH₂Cl₂, -78 °C, 74%. (c) ArNH₂, NaBH(AcO)₃, 85%. (d) (i) HCl (1M), THF. (ii) NH₄OH, 62% (for **21a**), 97% (for **21b**). (e) BH₃, Me₂S, THF, 89%.

The synthesis of **18c** was carried out in a similar way (Scheme 9). Thus, starting from a mixture 12:1 of pyrrolidines **58**, ³⁸ selective acetonide hydrolysis followed by chromatographic purification, allowed for the separation of pyrrolidines **59** and **60**. Oxidative cleavage of major derivative **59** and subsequent coupling reaction of the corresponding carboxylic acid **62** with *o*-phenylenediamine followed by cyclization afforded benzimidazole derivative **64**. Protecting group manipulation followed by reduction of the ester moiety and final deprotection afforded benzimidazole derivative **18c**.

Scheme 9 Reagents and conditions: (a) Zn(NO₃)₂ · 6H₂O, MeCN, 50 °C, 75%. (b) NaIO₄, THF-H₂O, 93%. (c) NaClO₂, NaH₂PO₄, 2-methyl-2-butene, 87%. (d) *o*-phenylenediamine, PyBOP, DIEA, DMF, 88%. (e) AcOH, 50 °C, 96%. (f) H₂, Pd/C, (Boc)₂O, MeOH, 80%. (g) LiAlH₄, THF, 0 °C, 96%. (h) (i) HCl (4M). (ii) NH₄OH, 92%.

Biological evaluation of 3,4-dihydroxypyrrolidine derivatives towards glycosidases

The new compounds 18a-c, 19a-b, 20a-b and 21a-b have been assayed for their inhibitory activity towards 13 commercially available glycosidases.³⁹ At 1 mM concentration and under enzyme optimal pH they did not inhibit the B-galactosidases from Aspergillus niger and Escherichia coli, α-glucosidases from yeast and rice, α-mannosidases from Jack beans, β-mannosidases from snail, β-xylosidases from Aspergillus niger and βacetylglucosaminidase from Jack beans and from bovine kidney. Table 1 summarises the inhibitory activity measured towards α-L-fucosidase from bovine kidney, β-galactosidase from bovine liver, amyloglucosidase from Aspergillus niger and β-glucosidase from almonds. Apart from the benzimidazole derivatives 18a and **18c** that inhibit only α -L-fucosidases at 1 mM concentration, the other 5-methyl-3,4-dihydroxypyrrolidine derivatives present weak inhibitory activity toward β-galactosidase from bovine liver, but not towards other β-galactosidases. The former enzyme is known to be poorly selective and to be inhibited by almost any amine, so the results of Table 1 should not be taken as a lack of α -L fucosidase selectivity of pyrrolidines 18b, 19a, 19b, 20b, 21a and 21b. As expected, the best inhibitory activities and selectivities towards α -L-fucosidases were observed for pyrrolidines 18a (K_i = 80 nM) and **20b** ($K_i = 40$ nM) that share the same absolute configuration than C(2,3,4,5) of α -L-fucopyranosides.

Conclusions

New 3,4-dihydroxypyrrolidine derivatives have been obtained in a highly stereoselective manner starting from D-mannose, D-ribose and L-fucose. They have been assayed for their inhibitory activity towards 13 glycosidases. Compounds **18a** and **20b** with a (5S)-methyl group that share the absolute configuration of C(2,3,4,5)

Table 1 Inhibitory activities of 3,4-dihydroxypyrrolidine derivatives **18**, **19**, **20** and **21** toward glycosidases. Percentage of inhibition at 1 mM, IC₅₀ (in parentheses, μ M) and K_i (bold, μ M) if measured. Optimal pH, 35 °C^{a,b,c}

	α-fucosidase	β -galactosidase	amyloglucosidase	β-glucosidase
18a	100%			
	$K_{\rm i} = 0.080 (\rm C)$	ni	ni	ni
18b	94%			94%
	$K_{\rm i} = 240 ({\rm C})$	48%	ni	$K_{\rm i} = 46 ({\rm NC})$
18c	85% (140)	ni	ni	ni
19a	95% (11)	62%	37%	32%
	$K_{\rm i} = 1.2 ({\rm C})$			
19b	79%	45%	ni	59%
20a	99%	ni	ni	ni
	$K_{\rm i} = 0.237$ (C)			
20b	99% (0.3)	47%	39%	ni
	$K_{\rm i} = 0.040$ (C)			
21a	89% (24)	73%	ni	ni
	$K_{\rm i} = 2.4 ({\rm C})$			
21b	95% (21)	83%	18%	ni
	$K_{\rm i} = 2.4 (\rm C)$			

^a For conditions of measurements see ref. 39. b (C): competitive, (NC): non-competitive from Lineweaver-Burk plots, ni: no inhibition at 1 mM concentration of the inhibitor. c α-L-fucosidase from bovine kidney, β-galactosidase from bovine liver, Amyloglucosidase from Aspergillus niger, β-glucosidase from almonds.

of L-fucopyranosides are potent and selective inhibitors of α -L-fucosidase from bovine kidney ($K_i = 80$ and 40 nM respectively). We have found that the (5S)-5-methylsubstituent (compounds 19a, 20b, 21a, 21b) leads to significantly better inhibitory activities than the (5R)-5-methyl substituent (compounds 18b, 19b) and that substitution at C(2) of the pyrrolidine ring by a (2S)-substituent (18a, 20b) generates better inhibitors than the corresponding homoanalogues with (2R)-substituents (19a, 21b).

Experimental

General methods

Optical rotations were measured in a 1.0 cm or 1.0 dm tube with a Perkin–Elmer 241MC spectropolarimeter. 1 H and 13 C NMR spectra were obtained for solutions in CDCl₃, [d₆]DMSO, CD₃OD and D₂O; J values are given in Hz and δ in ppm. All the assignments were confirmed by two-dimensional NMR experiments. The FAB mass spectra were obtained using glycerol or 3-nitrobenzyl alcohol as the matrix. TLC was performed on silica gel HF₂₅₄ (Merck), with detection by UV light charring with H₂SO₄ or with Pancaldi reagent [(NH₄)₆MoO₄, Ce(SO₄)₂, H₂SO₄, H₂O]. Silica gel 60 (Merck, 230 mesh) was used for preparative chromatography.

Experimental procedures and characterization data for the new compounds

(Z)- and (E)-Ethyl 2,3,7-trideoxy-4,5-O-isopropylidene-D-ribohept-2-enoate (39 and 40). To a solution of 38^{37} (0.886 g, 5.09 mmol) in dry CH₂Cl₂ (31 mL), ethoxycarbonyltriphenylmethylenephosphorane (2.66 g, 7.63 mmol) was added, and the mixture was heated under reflux for 6 h. After evaporation of the solvent, the residue was purified by column chromatography (ethyl acetate/petroleum ether 1:5) affording 39 (939 mg, 3.85 mmoles, 76%) and **40** (181 mg, 0.74 mmol, 14%) as oils. Data for **39**: $[\alpha]_D$ +47.5 (c 1.2 in CH₂Cl₂). IR (v cm⁻¹) 3483 (OH), 2986, 2936, 1728 (C=O), 1646 (C=C), 1195, 1057, 871. ¹H NMR (500 MHz, CDCl₃, δ ppm) δ 1.16 (3H, d, $J_{\text{Me-6,6}} = 6.0$, 6-Me), 1.28 (3H, t, ${}^{2}J_{\text{H,H}} = 7.5$, CH_2CH_3), 1.39, 1.51 (3H each, 2 s, $C(CH_3)_2$), 2.89 (1H, bs, OH), 3.74 (1H, dq, $J_{6,5} = 7.5$, 6-H), 4.14 (1H, dd, $J_{5,4} = 6.5$, 5-H), 4.19 $(2H, qd, J = 1.0, CH_2CH_3), 5.54 (1H, ddd, J_{4,2} = 1.0, J_{4,3} = 8.5,$ 4-H), 6.00 (1H, dd, $J_{2,3} = 11.5, 2$ -H), 6.28 (1H, dd, 3-H). ¹³C NMR (125.7 MHz, CDCl₃, δ ppm) δ 14.3 (CH₂CH₃), 19.8 (6-Me), 25.6, 28.0 (C(CH₃)₂), 61.3 (CH₂CH₃), 66.7 (C-6), 76.9 (C-4), 83.2 (C-5), 109.4 (C(CH₃)₂), 122.0 (C-2), 146.8 (C-3), 167.2 (C=O). FABMS 267 [(M + Na)⁺, 93%], 245 [(M + H)⁺, 100%]. FABHRMS m/z found 267.1210, calcd. for $C_{12}H_{20}O_5Na$ (M + Na)+: 267.1208. Data for **40**: $[\alpha]_D$ -4.0 (c 0.5 in CH₂Cl₂). IR (v cm⁻¹) 3447 (OH), 2983, 2927, 1720 (C=O), 1371, 1302. ¹H NMR (300 MHz, CDCl₃, δ ppm) δ 1.27 (d, 3H, $J_{\text{Me,6}} = 6.3$, 6-Me), 1.28 (3H, t, ${}^2J_{\text{H,H}} = 7.2$, CH_2CH_3), 1.38, 1.49 (3H each, 2 s, $C(CH_3)_2$), 1.86 (1H, bs, OH), 3.75 (1H, dq, $J_{6,5} = 8.1$, 6-H), 4.00 (1H, dd, $J_{5,4} = 6.6$, 5-H), 4.19 (2H, q, CH_2CH_3), 4.81 (1H, m, 4-H), 6.09 (1H, dd, $J_{2,3}$ 15.6, $J_{2,4} = 1.5$, 2-H), 7.09 (1H, dd, $J_{3,4} = 5.4$, 3-H).¹³C NMR (75.4 MHz, CDCl₃, δ ppm) δ 14.4 (CH₂CH₃), 21.1 (6-Me), 25.6, 27.7 (C(CH₃)₂), 60.7 (CH₂CH₃), 66.5 (C-6), 76.8 (C-4), 82.1 (C-5), 109.4 (C(CH₃)₂), 122.5 (C-2), 144.1 (C-3), 166.5 (C=O). FABMS 267 [(M + Na) $^{+}$, 100%]. FABHRMS m/z found 267.1207, calcd. for $C_{12}H_{20}O_5Na (M + Na)^+$: 267.1208.

Ethyl 2,3,6,7-tetradeoxy-3,6-imino-4,5-O-isopropylidene-L-*galacto*-heptanoate ((2R,3S,4R,5S)-2-ethoxycarbonylmethyl-3,4-O-isopropylidene-5-methyl-pyrrolidine-3,4-diol) (24a). A solution of 39 (0.543 g, 2.23 mmol) in dry CH₂Cl₂ (5 mL) was added dropwise to a stirred solution of MsCl (0.54 mL, 6.99 mmol) in dry pyridine (2.2 mL) cooled to 0 °C. After stirring at r.t. overnight, the mixture was cooled to 0 °C, H₂O (5 mL) was added and the reaction stirred for 15 min at r.t. The solvent was then evaporated, the crude was

diluted with dichloromethane (30 mL) and washed with H_2O (2 × 30 mL) and brine (30 mL). The organic phase was dried, filtered and concentrated. The obtained residue was dissolved in absolute EtOH (20 mL), cooled to 0 °C and saturated with NH₃. After 5 days at r.t., the solvent was evaporated and the residue was treated with NH₄OH (25%, 30 mL) and extracted with CH₂Cl₂ $(5 \times 30 \text{ mL})$. The organic phase was washed with satd. aq. sol. of NaHCO₃ (30 mL) and H₂O until neutral pH, dried (Na₂SO₄), filtered and concentrated. The resulting residue was purified by column chromatography (ether:acetone (5:1), Et₃N (1%)) to give pure **24a** (0.389 g, 76%). $[\alpha]_D$ –12.7 (c 1.2 in CH₂Cl₂). IR (v cm⁻¹) 3444 (b, NH), 2981, 2934, 1734 (C=O), 1376, 1208, 1012. ¹H NMR (300 MHz, CDCl₃, δ ppm) δ 1.20 (3H, d, $J_{Me.6} = 6.6$, 6-Me), 1.26 (3H, t, ${}^{2}J_{H,H} = 7.1$, CH₂CH₃), 1.30, 1.44 (3H each, 2 s, $C(CH_3)_2$), 1.88 (1H, bs, NH), 2.57 (1H, dd, ${}^2J_{2a,2b} = 16.5$, $J_{2a,3} =$ 6.6, 2a-H), 2.66 (1H, dd, $J_{2b,3} = 6.6$, 2b-H), 2.86 (1H, qd, $J_{6.5} =$ 4.0, 6-H), 3.14 (1H, td, $J_{3,4} = 4.1$, 3-H), 4.15 (2H, qd, J = 1.4, CH_2CH_3), 4.47 (1H, dd, $J_{54} = 5.5$, 5-H), 4.62 (1H, dd, 4-H). ¹³C NMR (75.4 MHz, CDCl₃, δ ppm) δ 13.4 (CH₂CH₃), 14.3 (6-Me), 24.3, 25.8 (C(CH₃)₂), 33.6 (C-2), 57.7 (C-6), 58.8 (C-3), 60.7 (CH_2CH_3) , 82.4 (C-4), 83.2 (C-5), 110.9 $(C(CH_3)_2)$, 172.1 (C=O). CIMS 244 $[(M + H)^+, 90\%]$. CIHRMS m/z found 244.1551, calcd. for $C_{12}H_{22}NO_4$ (M + H)⁺: 244.1549. Anal. calcd. for $C_{27}H_{34}N_2O_5$: C, 59.24; H, 8.70; N, 5.76. Found: C, 58.75; H, 8.82; N, 5.61.

Ethyl 2,3,6,7-tetradeoxy-3,6-imino-4,5-*O*-isopropylidene-L-galacto-heptanoate and ethyl 2,3,6,7-tetradeoxy-3,6-imino-4,5-Oisopropylidene-L-talo-heptanoate ((2R and 2S,3S,4R,5S)-2ethoxycarbonylmethyl-3.4-O-isopropylidene-5-methyl-pyrrolidine-3,4-diol) (24a and 24b). Conventional mesylation of compound 40 (162 mg, 0.66 mmol) followed by NH₃ treatment and chromatographic purification as indicated for the preparation of 24a afforded pyrrolidines 24a (88.2 mg, 0.36 mmol, 55%) and **24b** (8.8 mg, 0.036 mmol, 5%). Data for **24b**: $[\alpha]_D$ +4.5 (c 0.7 in CH₂Cl₂). IR (v cm⁻¹) 3448, (bs, NH), 2981, 2934, 1734 (C=O). ¹H NMR (300 MHz, CDCl₃, δ ppm) δ 1.20 (d, 3H, $J_{Me,6} = 6.6$, 6-Me), 1.25 (3H, t, ${}^{2}J_{H,H} = 7.2$, CH₂CH₃), 1.30, 1.46 (3H each, 2 s, $C(CH_3)_2$), 1.97 (1H, bs, NH), 2.33 (1H, dd, ${}^2J_{2a,2b} = 15.3$, $J_{2a,3} =$ 7.8, 2a-H), 2.41 (1H, dd, $J_{2b,3} = 7.8$, 2b-H), 3.07 (1H, qd, $J_{6,5} =$ 3.6, 6-H), 3.59 (1H, t, 3-H), 4.16 (2H, q, CH₂CH₃), 4.46-4.52 (2H, m, 4-H, 5-H). ¹³C NMR (75.4 MHz, CDCl₃, δ ppm) δ 13.5 (6-Me), 14.3 (CH₂CH₃), 24.2, 26.2 (C(CH₃)₂), 36.8 (C-2), 56.2 (C-6), 60.7 (CH₂CH₃), 61.2 (C-3), 83.2, 86.5 (C-5, C-4), 111.2 $(C(CH_3)_2)$, 171.5 (C=O). CIMS 244 [(M + H)+, 47%]. CIHRMS m/z found 244.1548, calcd. for $C_{12}H_{22}NO_4 (M + H)^+$: 244.1549.

Ethyl *N-(tert-*butoxycarbonyl)-2,3,6,7-tetradeoxy-3,6-imino-4, 5-*O*-isopropylidene-L-*galacto*-heptanoate ((2R,3S,4R,5S)-*N-(tert-*butoxycarbonyl)-2-ethoxycarbonylmethyl-3,4-*O*-isopropylidene-5-methyl-pyrrolidine-3,4-diol) (44). To a solution of 24a (0.306 g, 1.26 mmol) in dry pyridine (4.3 mL) was added a solution of Boc₂O (0.696 g, 2.99 mmol) in dry pyridine (2.9 mL). The mixture was left at r.t. for 3 h. After evaporation of the solvent, the residue was dissolved in AcOEt (25 mL) and washed twice with brine (25 mL). The dried organic phase was evaporated and the resulting residue was purified by column chromatography (ether:petroleum ether, 1:2) to give pure 44 (0.401 g, 93%) as a syrup. [α]_D –12.8 (c 1 in CH₂Cl₂). IR (v cm⁻¹) 2981, 2937, 1736 (C=O), 1696 (C=O), 1383, 1171. ¹H NMR (500 MHz, DMSO- d_6 , δ ppm) δ 1.15 (3H, d, $J_{Mc,6}$ = 7.0, 6-Me), 1.19 (3H, t, ${}^2J_{H,H}$ = 7.2, CH₂CH₃), 1.29 (3H, s,

C(CH₃)₂), 1.41 (9H, s, C(CH₃)₃), 1.45 (3H, s, C(CH₃)₂), 2.47 (1H, dd, ${}^{2}J_{2a,2b} = 16.0$, $J_{2a,3} = 10.5$, 2a-H), 2.67 (1H, dd, $J_{2b,3} = 4.5$, 2b-H), 3.94 (1H, q, $J_{6.5} = 7.0$, 6-H), 4.06 (2H, m, CH₂CH₃), 4.26 (1H, ddd, $J_{3,4} = 7.0$, 3-H), 4.73 (1H, t, $J_{5,4} = 7.0$, 5-H), 4.79 (1H, t, 4-H). ¹³C NMR (125.7 MHz, DMSO- J_{6} , δ ppm) δ 13.5 (6-Me), 15.8 (CH₂CH₃), 24.2, 24.5 (C(CH₃)₂), 27.7 (C(CH₃)₃), 35.8 (C-2), 53.9 (C-6), 55.4 (C-3), 59.1 (CH₂CH₃), 78.1 (C-4), 78.7 (C(CH₃)₃), 79.2 (C-5), 111.3 (C(CH₃)₂), 153.0 (C=O of Boc), 170.0 (COOEt). CIMS 343 [(M)⁺, 4%], 244 [(M – Boc + 2H)⁺, 100%]. CIHRMS m/z found 343.1990, calcd. for C₁₇H₂₉NO₆ (M)⁺: 343.1994.

(2R,3S,4R,5S)-N-(tert-Butoxycarbonyl)-2-(2-aminophenylcarbamoylmethyl)-3,4-O-isopropylidene-5-methylpyrrolidine-3,4-diol (45). A solution of 44 (132 mg, 0.38 mmol) in 2:1 EtOH:NaOH (12 mL) was heated at 50 °C for 2 h. The mixture was then neutralized with IRA-120H+, filtered and concentrated. The crude acid thus obtained was dissolved in DMF and o-phenylenediamine (45 mg, 0.42 mmol), DIPEA (130 μL, 0.76 mmol) and PyBOP (218 mg, 0.42 mmol) were added. The mixture was stirred overnight at r.t. Then, the solvent was evaporated and the residue dissolved in CH₂Cl₂ (40 mL) and washed with satd. ag. sol. of citric acid (2 × 30 mL) and brine (30 mL). The organic phase was dried (Na₂SO₄), filtered and concentrated. The resulting crude was purified by column chromatography (CH₂Cl₂:MeOH, 30:1) to give pure 45 (132 g, 76%) as a white foam. $[\alpha]_D$ –29.2 (c 0.9 in CH₂Cl₂). IR (v cm⁻¹) 3545 (NH), 3365 (NH), 2981, 2935, 1689 (C=O), 1391, 1168. ¹H NMR (300 MHz, CDCl₃, δ ppm) δ 1.24 (3H, d, $J_{\text{Me,5}}$ = 7.2, 5-Me), 1.36 (3H, s, $C(CH_3)_2$), 1.47 (9H, s, $C(CH_3)_3$), 1.59 $(3H, s, C(CH_3)_2), 2.73 (1H, dd, {}^2J_{1'a,1'b} = 14.4, J_{1'a,2} = 9.6, 1'a-H),$ 2.95 (1H, dd, $J_{1'b,2} = 4.8$, 1'b-H), 4.07 (1H, q, $J_{5.4} = 7.2$, 5-H), 4.48 $(1H, ddd, J_{2.3} = 7.2, 2-H), 4.75 (1H, t, J_{4.3} = 7.2, 4-H), 4.91 (1H, t, 3-H)$ H), 6.72–6.77 (2H, m, H-arom.), 7.04 (1H, m, H-arom.), 7.15 (1H, m, H-arom.), 7.52 (1H, bs, CONH). ¹³C NMR (75.4 MHz, CDCl₃, δ ppm) δ 17.0 (5-Me), 24.9, 25.6 (C(CH₃)₂), 28.6 (C(CH₃)₃), 39.0 (C-1'), 55.2 (C-5), 56.4 (C-2), 80.3 (C-3, C-4), 80.5 (C(CH₃)₃), 112.9 (C(CH₃)₂), 117.5, 119.0, 123.8, 125.9, 127.4, 141.6 (6 C-Ar), 154.3 (C=O of Boc), 169.7 (CONH). CIMS 406 [11%, (M + H)⁺], $405 [(M)^+, 20\%], 306 [(M - Boc + 2H)^+, 100\%].$ CIHRMS m/zfound 405.2269, calcd. for C₂₁H₃₁N₃O₅ (M)+: 405.2264.

(2R,3S,4R,5S)-N-(tert-Butoxycarbonyl)-(2-(1H-benzoimidazol-2-ylmethyl)-3,4-O-isopropylidene-5-methylpyrrolidine-3,4-diol (46). A solution of 45 (87.8 mg, 0.216 mmol) in glacial AcOH was stirred at 55 °C for 5 h. Then, the solvent was evaporated and the resulting residue was purified by column chromatography (CH₂Cl₂:MeOH, 25:1) to give pure **46** (83.6 mg, 100%) as a foam. $[\alpha]_D$ +3.4 (c 1 in CH₂Cl₂). IR (v cm⁻¹) 3464 (NH), 2980, 2934, 1691 (C=O), 1383, 1210, 1167, 1100, 1028, 868, 743. ¹H NMR (300 MHz, CDCl₃, δ ppm) δ 1.26 (3H, d, $J_{Me,5} = 6.9$, 5-Me), 1.39 $(3H, s, C(CH_3)_2), 1.43 (9H, s, C(CH_3)_3), 1.61 (3H, s, C(CH_3)_2),$ 3.28 (1H, dd, ${}^{2}J_{1'a,1'b} = 15.3$, $J_{1'a,2} = 6.0$, 1'a-H), 3.44 (1H, dd, $J_{1'b,2} = 7.2$, 1'b-H), 4.13 (1H, q, $J_{5,4} = 6.9$, 5-H), 4.44 (1H, m, 2-H), 4.79 (1H, t, $J_{4,3} = 6.9$, 4-H), 4.83 (1H, t, $J_{3,2} = 6.9$, 3-H), 7.19 (2H, dd, J = 6.0, J = 3.0, H-arom.), 7.55 (2H, dd, H-arom.).¹³C NMR (75.4 MHz, CDCl₃, δ ppm) δ 16.8 (5-Me), 25.0, 25.4 $(C(CH_3)_2)$, 28.5 $(C(CH_3)_3$, 32.2 (C-1'), 55.0 (C-5), 57.5 (C-2), 79.4, 80.2 (C-3, C-4), 80.9 (C(CH₃)₃), 110.8 (C(CH₃)₂), 114.9, 122.1, 138.8, 152.7 (C-Ar), 154.8 (C=O). CIMS 388 [(M + H)+, 76%], $387 [(M)^+, 33\%], 288 [(M - Boc + 2H)^+, 100\%], 287 [(M - Boc +$

H)⁺, 15%]. CIHRMS m/z found 387.2154, calcd. for $C_{21}H_{29}N_3O_4$ (M)⁺: 387.2158.

(2R,3S,4R,5S)-2-(1H-Benzoimidazol-2-yl-methyl)-5-methyl**pyrrolidine-3,4-diol (19a).** A solution of **46** (47.2 mg, 0.122 mmol) in 4M HCl (3 mL) was stirred at r.t. for 8 h. The solvent was then evaporated and the resulting residue dissolved in H₂O (1 mL). NH₄OH (1 mL) was added and the mixture was left at r.t. for 2 h. Then, the solvent was evaporated and the resulting residue was purified by column chromatography (CH₂Cl₂:MeOH:NH₄OH, 5:1:0.1) to give pure **19a** (19.4 mg, 64%). $[\alpha]_D$ +29.1 (c 1.3 in MeOH). IR (v cm⁻¹) 3500–3200 (OH,NH), 2926, 1445. ¹H NMR $(300 \text{ MHz}, \text{CD}_3\text{OD}, \delta \text{ ppm}) \delta 1.23 (3\text{H}, d, J_{\text{Me.5}} = 6.6, 5\text{-Me}), 3.13$ $(1H, dd, {}^{2}J_{1'a,1'b} = 15.3, J_{1'a,2} = 8.4, 1'a-H), 3.22 (1H, m, 5-H), 3.35$ $(1H, m, 1'b-H), 3.71 (1H, td, J_{2.1'b} = 8.4, J_{2.3} = 6.0, 2-H), 4.09 (1H, td, J_{2.1'b} = 8.4, J_{2.3} = 6.0, 2-H), 4.09 (1H, td, J_{2.1'b} = 8.4, J_{2.3} = 6.0, 2-H), 4.09 (1H, td, J_{2.1'b} = 8.4, J_{2.3} = 6.0, 2-H), 4.09 (1H, td, J_{2.1'b} = 8.4, J_{2.3} = 6.0, 2-H), 4.09 (1H, td, J_{2.1'b} = 8.4, J_{2.3} = 6.0, 2-H), 4.09 (1H, td, J_{2.1'b} = 8.4, J_{2.3} = 6.0, 2-H), 4.09 (1H, td, J_{2.1'b} = 8.4, J_{2.3} = 6.0, 2-H), 4.09 (1H, td, J_{2.1'b} = 8.4, J_{2.3} = 6.0, 2-H), 4.09 (1H, td, J_{2.1'b} = 8.4, J_{2.3} = 6.0, 2-H), 4.09 (1H, td, J_{2.1'b} = 8.4, J_{2.3} = 6.0, 2-H), 4.09 (1H, td, J_{2.1'b} = 8.4, J_{2.3} = 6.0, 2-H), 4.09 (1H, td, J_{2.1'b} = 8.4, J_{2.3} = 6.0, 2-H), 4.09 (1H, td, J_{2.1'b} = 8.4, J_{2.3} = 6.0, 2-H), 4.09 (1H, td, J_{2.1'b} = 8.4, J_{2.3} = 6.0, 2-H), 4.09 (1H, td, J_{2.1'b} = 8.4, J_{2.3'b} = 8.4, J_{2.3'b}$ t, $J_{4.3} = J_{4.5} = 5.1$, 4-H), 4.26 (1H, dd, 3-H), 7.21 (2H, dd, J = 6.0, J = 3.3, H-arom.), 7.51 (2H, dd, H-arom). ¹³C NMR (75.4 MHz, CD_3OD , δ ppm) δ 13.9 (5-Me), 29.5 (C-1'), 57.7 (C-5), 60.7 (C-2), 73.5 (C-3), 73.8 (C-4), 115.5, 123.3, 139.6, 154.0 (C-Ar). CIMS 248 [(M + H) $^{+}$, 32%]. CIHRMS m/z found 248.1394, calcd. for $C_{13}H_{18}N_3O_2(M+H)^+$: 248.1399.

Reductive amination: general procedure

To a solution of the corresponding aldehyde (0.10 mmol) in 1,2-dichloroethane (1 mL), the corresponding amine (0.11 mmol) and NaBH(OAc) $_3$ (0.14 mmol) were added. The reaction mixture was stirred at r.t. under N $_2$ for 3 h. Then, aq. sat. sol. of NaHCO $_3$ was added and the mixture extracted with AcOEt, dried (Na $_2$ SO $_4$), filtered and evaporated in vacuo. Purification of the residue gave the corresponding amino pyrrolidines.

(2S,3S,4R,5S)-2-[2-(1,1'-Biphenyl-4-ylamino)methyl]-5-methylpyrrolidine-3,4-diol hydrochloride (20b). Reductive amination of 32³⁴ with biphenyl-4-amine gave, after column chromatography on silica gel (ether:petroleum ether 1:1), protected derivative 53 (101 mg, 66%). A solution of 53 (70 mg, 0.148 mmol in MeOH (6 mL) was hydrogenated over Pd/C for 3 h. The mixture was filtered through celite and evaporated. The crude product was then treated with 4 N HCl (2 mL) and stirred at r.t. overnight. Evaporation of the solvent afforded **20b** (28 mg, 89%). $[\alpha]_D$ -43.7 (c 0.67 in MeOH). ¹H NMR (300 MHz, CD₃OD, δ ppm) δ 1.43 $(3H, d, J_{Me,5} = 6.6, 5-Me), 3.76-3.86 (4H, m, 5-H, 2-H, 1'a-H, 1'a-$ 1'b-H), 4.06 (1H, t, $J_{3,4} = J_{3,2} = 2.7$, 3-H), 4.22 (1H, m, 4-H), 7.31–7.34 (3H, m, H-arom.), 7.42 (2H, brt, J = 7.5, H-arom.), 7.59 (2H, brd, J = 7.9, H-arom.), 7.66 (2H, brd, J = 8.7, H-arom.). ¹³C NMR (75.4 MHz, MeOD, δ ppm) δ 12.0 (5-Me), 48.1–49.8 (C-1', under MeOD), 59.0, 60.1 (C-2, C-5), 72.9 (C-3), 76.0 (C-4), 119.7, 127.6, 128.3, 129.4, 129.9 (C arom.), 138.5, 141.4, 141.7 (Cq arom.). CIMS 299 [(M + H) $^{+}$, 100%]. CIHRMS m/z found 299.1753, calcd. for $C_{15}H_{25}NO_5 (M + H)^+$: 299.1733.

(2R,3S,4R,5S)-N-(tert-Butoxycarbonyl)-2-[(1,1'-biphenyl-4-carbamoyl)methyl]-3,4-O-isopropylidene-5-methylpyrrolidine-3,4-diol (56). A solution of 44 (0.116 g, 0.337 mmol) in 2:1 EtOH: NaOH (12 mL) was heated at 50 °C for 2 h. The mixture was then neutralized with IRA-120H +, filtered and concentrated. The crude acid thus obtained was dissolved in DMF and biphenyl-4-amine (68 mg, 0.40 mmol), DIPEA (0.13 mL, 0.78 mmol) and PyBOP (0.21 g, 0.40 mmol) were added. The mixture was stirred overnight at r.t. Then, the solvent was evaporated and the

residue dissolved in CH₂Cl₂ (30 mL) and washed with 1 M HCl (25 mL) and brine (25 mL). The organic phase was dried (Na₂SO₄), filtered and concentrated. Purification by column chromatography (CH₂Cl₂:MeOH, 60:1) afforded pure **56** (0.111 g, 71%) as a white foam. $[\alpha]_D$ -3.5 (c 1 in CH₂Cl₂). IR (v cm⁻¹) 3466, 2981, 2934, 1692 (C=O), 1666 (C=O), 1529, 1392, 1168. ¹H NMR (300 MHz, CDCl₃, δ ppm) δ 1.24 (3H, d, $J_{Me,5} = 6.9$, 5-Me), 1.39 (3H, s, $C(CH_3)_2$, 1.48 (9H, s, $C(CH_3)_3$), 1.59 (3H, s, $C(CH_3)_2$), 2.86 (2H, m, 1'a-H, 1'b-H), 4.07 (1H, q, $J_{5,4} = 6.9$, 5-H), 4.44 (1H, m, 2-H), 4.77 (1H, t, $J_{4,3}$ =6.9, 4-H), 4.89 (1H, t, $J_{3,2}$ = 6.9, 3-H), 7.32 (1H, m, H-arom.), 7.42 (2H, m, H-arom), 7.53-7.62 (6H, m, Harom.), 8.21 (1H, brs, CONH). ¹³C NMR (75.4 MHz, CDCl₃, δ ppm) δ 17.1 (5-Me), 24.9, 25.5 (C(CH₃)₂), 28.6 (C(CH₃)₃), 40.0 (C-1'), 55.1 (C-5), 56.2 (C-2), 79.7, 79.8 (C-3, C-4), 80.7 (C(CH₃)₃), 113.0 (C(CH₃)₂₎, 122.1, 126.9, 127.2, 127.7, 128.9, 136.9, 137.8, 140.8 (2Ph), 154.5 (C=O of Boc), 169.2 (CONH). CIMS 467 [(M + H)⁺, 14%], 466 [(M)⁺, 17%], 367 [(M – Boc + 2H)⁺, 100%], 366 $[(M - Boc + H)^{+}, 10\%]$. CIHRMS m/z found 466.2491, calcd. for C₂₇H₃₄N₂O₅ (M)⁺: 466.2468. Anal. calcd. for C₂₇H₃₄N₂O₅: C, 69.50; H, 7.35; N, 6.00. Found: C, 69.40; H, 7.74; N, 5.62.

(2R,3S,4R,5S)-N-(tert-Butoxycarbonyl)-2-[2-(1,1'-biphenyl-4ylamino)ethyl|-3,4-O-isopropylidene-5-methylpyrrolidine-3,4-diol (57). To a 0 °C solution of amide 56 (94.3 mg, 0.20 mmol) in dry THF (5 mL), BH₃·SMe₂ (2 M in THF) (0.5 mL, 1 mmol) was added dropwise under argon atmosphere. The reaction mixture was then heated under reflux for 3 h. After cooling, the reaction was quenched by slow addition of MeOH (5 mL). After evaporation of the solvent, the residue was purified by column chromatography (ether:petroleum ether, 1:2) to give 57 (80.8 mg, 89%) as a foam. $[\alpha]_D$ +14.6 (c 0.9 in CH₂Cl₂). IR (v cm⁻¹) 3402 (NH), 2979, 2916, 1689 (C=O), 1613, 1391. ¹H NMR (300 MHz, CDCl₃, δ ppm) δ 1.21 (3H, d, $J_{Me.5} = 6.6$, 5-Me), 1.39 (3H, s, $C(CH_3)_2$), 1.49 (9H, s, $C(CH_3)_3$, 1.57 (3H, s, $C(CH_3)_2$), 1.89 (1H, m, 1'a-H), 2.14 (1H, m, 1'b-H), 3.26 (2H, m, 2'a-H, 2'b-H), 4.04-4.13 (2H, m, 2-H, 5-H), 4.73 (1H, t, $J_{4,5} = 7.2$, 4-H), 4.79 (1H, t, $J_{2,3} = J_{3,4} = 7.2$, 3-H), 6.66 (2H, d, J = 8.4, H-arom.), 7.25 (1H, tt, J = 7.2, H-arom.), 7.36–7.46 (4H, m, H-arom.), 7.53 (2H, dd, J = 8.4, J = 1.5, Harom.). ¹³C NMR (75.4 MHz, CDCl₃, δ ppm) δ 17.1 (5-Me), 25.0, 25.4 (C(CH₃)₂), 28.6 (C(CH₃)₃), 30.9 (C-1'), 42.1 (C-2'), 54.7, 56.7 (C-2, C-5), 79.8, 80.0 (C-3, C-4), 80.2 $(C(CH_3)_3)$, 113.0 $(C(CH_3)_2)$, 113.7, 126.2, 126.4, 128.1, 128.7, 130.7, 140.5, 147.1 (C-Ar), 154.6 (C=O of Boc). CIMS 453 $[(M + H)^+, 48\%]$, 452 $[(M)^+, 65\%]$, 353 $[(M - Boc + 2H)^+, 100\%], 352 [(M Boc + H)^+, 35\%].$ CIHRMS m/z found 452.2664, calcd. for $C_{27}H_{36}N_2O_4$ (M)+: 452.2675. Anal. calcd. for C₂₇H₃₆N₂O₄: C, 71.65; H, 8.02; N, 6.12. Found: C, 71.23; H, 7.93; N, 5.96.

(2*R*,3*S*,4*R*,5*S*)-2-[2-(1,1'-Biphenyl-4-ylamino)ethyl]-5-methylpyrrolidine-3,4-diol (21b). A solution of 57 (32.1 mg, 0.07 mmol) in 4 N HCl (2 mL) was stirred at r.t. overnight. The solvent was then evaporated, the residue dissolved in H₂O (1 mL), NH₄OH was added (1 mL) and the mixture stirred at r.t. for 2 h. After evaporation of the solvent, the resulting residue was purified by column chromatography (CH₂Cl₂:MeOH:NH₄OH, 5:1:0.1) to give pure **21b** (21.4 mg, 97%). [α]_D –3.7 (*c* 0.9 in MeOH). IR (ν cm⁻¹) 3310 (OH, NH), 2928, 1611, 1526. ¹H NMR (300 MHz, CD₃OD, δ ppm) δ 1.30 (3H, d, $J_{\text{Me,5}}$ = 6.6, 5-Me), 1.92 (1H, m, 1'a-H), 2.15 (1H, m, 1'b-H), 3.29 (2H, m, 2'a-H, 2'b-H), 3.34–3.41 (2H, m, 5-H, 2-H), 4.17 (1H, dd, $J_{4.5}$ = 5.7, $J_{4.3}$ = 5.1, 4-H), 4.24

(1H, t, $J_{3,2} = 5.1$, 3-H), 6.75 (2H, d, J = 8.7, H-arom.), 7.20 (1H, tt, J = 7.5, H-arom.), 7.35 (2H, t, J = 7.5, H-arom.), 7.41 (2H, d, J = 8.7, H-arom.), 7.51 (2H, dd, J = 8.4, J = 1.2, H-arom.). ¹³C NMR (75.4 MHz, CD₃OD, δ ppm) δ 13.6 (5-Me), 28.7 (C-1'), 42.1 (C-2'), 57.7, 60.4 (C-2, C-5), 72.9, 73.2 (C-3, C-4), 114.3, 126.9, 128.6, 129.7, 131.1, 142.7, 149.5 (C-Ar). CIMS 313 [(M + H)⁺, 95%], 312 [(M)⁺, 69%]. CIHRMS m/z found 313.1904, calcd. for $C_{19}H_{25}N_2O_2$ (M + H)⁺: 313.1916.

N-(tert-Butoxycarbonyl)-2,3,6,7-tetradeoxy-3,6-imino-4,5-Oisopropylidene-L-galacto-2-heptose ((2R,3S,4R,5S)-N-(tert-butoxycarbonyl)-2-formylmethyl-3,4-O-isopropylidene-5-methyl-pyr**rolidine-3,4-diol) (54).** To a solution of **44** (165 mg, 0.48 mmol) in dry CH₂Cl₂ (2.3 mL) cooled to -78 °C, 1M DIBALH in CH₂Cl₂ (0.95 mL) was added dropwise under a nitrogen atmosphere. After stirring for 30 min, MeOH (1.5 mL) was added and the mixture slowly warmed up to r.t. Then, aqueous 1 M HCl (4 mL) was added in an ice-cold bath and the aqueous phase was extracted with CH₂Cl₂ (4×5 mL). The combined organic phases were washed with satd. aq. sol. of NaHCO₃, dried (Na₂SO₄), filtered and concentrated. The resulting crude was purified by column chromatography (ethyl acetate:petroleum ether, 1:4) to give pure **54** (106 mg, 74%). $[\alpha]_D$ –13.6 (c 0.9 in CH₂Cl₂). IR $(v\ cm^{\text{--}1})\ 2981,\ 2936,\ 1724\ (C=O),\ 1693\ (C=O),\ 1384,\ 1169,\ 1028.$ ¹H NMR (300 MHz, CDCl₃, δ ppm) δ 1.20 (3H, d, $J_{Me6} = 6.7$, 6-Me), 1.33 (3H, s, $C(CH_3)_2$), 1.44 (9H, s, $C(CH_3)_3$), 1.50 (3H, s, $C(CH_3)_2$, 2.80 (2H, m, 2a-H, 2b-H), 4.03 (1H, q, 6-H), 4.44 (1H, m, 3-H), 4.73 (1H, t, $J_{5.6} = J_{5.4} = 6.9$, 5-H), 4.82 (1H, t, $J_{4.3} =$ 6.9, 4-H), 9.76 (1H, t, $J_{CHO,2a} = J_{CHO,2b} = 1.5$, CHO). ¹³C NMR (75.4 MHz, CDCl₃, δ ppm) δ 16.7 (6-Me), 24.8, 25.3 (C(CH₃)₂), 28.5 (C(CH₃)₃), 46.0 (C-2), 54.9, 55.1 (C-3, C-6), 79.1 (C-5), 80.0 (C-4), 80.4 ($C(CH_3)_3$), 112.9 ($C(CH_3)_2$), 154.1 (C=O of Boc), 200.6 (CHO). CIMS $300 [(M + H)^+, 40\%], 200 [(M - Boc + 2H)^+, 71\%].$ CIHRMS m/z found 300.1824, calcd. for $C_{15}H_{26}NO_5$ (M + H)⁺: 300.1811.

(2R,3S,4R,5S)-N-(tert-Butoxycarbonyl)-2-[(2-naphthalen-1ylamino)ethyl]-3,4-O-isopropylidene-5-methylpyrrolidine-3,4-diol (55). Reductive amination of 54 with naphthylamine gave, after column chromatography on silica gel (ether:petroleum ether 1:4), the protected derivative 55 (101.3 mg, 85%) as a white foam. $[\alpha]_D$ +18.6 (c 0.6 in CH₂Cl₂). IR (v cm⁻¹) 3418 (NH), 2979, 1690 (C=O), 1390, 1168, 768. ¹H NMR (300 MHz, CDCl₃, δ ppm) δ 1.23 (3H, d, $J_{Me,5} = 6.9$, 5-Me), 1.45 (3H, s, $C(CH_3)_2$, 1.49 (9H, s, $C(CH_3)_3$), 1.63 (3H, s, C(C H_3)₂), 2.08 (1H, dq, ${}^2J_{1'a,1'b} = 13.8$, $J_{1'a,2'a} = J_{1'a,2'b} =$ $J_{1'a,2} = 5.1, 1'a-H), 2.32 (1H, m, 1'b-H), 3.38 (2H, m, 2'a-H, 2'b-H),$ 4.07-4.12 (2H, m, 5-H, 2-H), 4.76 (1H, t, $J_{4,5} = J_{4,3} = 7.2$, 4-H), 4.86 (1H, t, $J_{3,2} = 7.2$, 3-H), 6.58 (1H, d, J = 7.5, H-arom.), 7.18(1H, d, J = 8.1, H-arom), 7.32 (1H, d, J = 7.8, H-arom), 7.36-7.43(2H, m, H-arom), 7.77 (1H, dd, J = 9.3, J = 1.8 H-arom), 7.90(1H, dd, J = 8.1, H-arom). ¹³C NMR (75.4 MHz, CDCl₃, δ ppm) δ 17.2 (5-Me), 25.1, 25.6 (C(CH₃)₂), 28.6 (C(CH₃)₃), 30.5 (C-1'), 42.2 (C-2'), 54.7, 57.9 (C-2, C-5), 77.3 (C(CH₃)₃), 79.9, 80.0 (C-3, C-4), 113.1 (C(CH₃)₂), 113.7, 116.7, 120.5, 123.5, 124.4, 125.7, 126.9, 128.6, 134.5, 144.0 (Ar), 154.3 (C=O of Boc). CIMS 427 $[(M + H)^+, 76\%], 426 [(M)^+, 100\%], 327 [(M - Boc + 2H)^+, 36\%],$ $326 [(M - Boc + H)^+, 29\%]$. CIHRMS m/z found 426.2522, calcd. for $C_{25}H_{34}N_2O_4$ (M)+: 426.2519. Anal. calcd. for $C_{25}H_{34}N_2O_4$: C, 70.39; H, 8.03; N, 6.57. Found: C, 70.26; H, 8.19; N, 6.43.

(2R,3S,4R,5S)-2-[(2-Naphthalen-1-ylamino)ethyl]-5-methylpyrrolidine-3,4-diol (21a). Conventional acidic deprotection of 55 (53.1 mg, 0.124 mmol) in 4 N HCl:THF (2:1, 3 mL), followed by neutralization with NH₄OH, gave after column chromatography $(CH_2Cl_2/MeOH/NH_4OH 10:1:0.1 \rightarrow 5:1:0.1)$ derivative **21a** (21.9 mg, 62%). $[\alpha]_D + 10.9$ (c 0.56 in MeOH). IR (v cm⁻¹) 3377, 3049 (NH, OH), 2928, 1581, 1532, 1410. ¹H NMR (300 MHz, CD₃OD, δ ppm) δ 1.19 (3H, d, $J_{\text{Me5}} = 6.9$, 5-Me), 1.90 (1H, m, 1'a-H), 2.17 (1H, m, 1'b-H), 2.94–3.05 (2H, m, 5-H, 2-H), 3.38 (2H, m, 2'a-H, 2'b-H), 4.02 (1H, t, $J_{4,5} = J_{4,3} = 5.4$, 4-H), 4.12 (1H, t, $J_{32} = 5.4$, 3-H), 6.61 (1H, d, J = 7.5, H-arom.), 7.13 (1H, d, J = 8.4, H-arom), 7.28 (1H, t, J = 7.8, H-arom), 7.35–7.42 (2H, m, H-arom), 7.72 (1H, m, H-arom), 8.00 (1H, m, H-arom). 13C NMR (75.4 MHz, CD₃OD, δ ppm) δ 14.5 (5-Me), 29.4 (C-1'), 42.9 (C-2'), 57.5, 61.0 (C-2, C-5), 74.1, 74.4 (C-3, C-4), 104.9, 117.6, 121.9, 125.1, 125.3, 126.5, 127.7, 129.3, 135.9, 145.3 (Ar). CIMS 287 [(M + H) $^+$, 100%], 286 [(M) $^+$, 95%]. CIHRMS m/zfound 287.1748, calcd. for $C_{17}H_{23}N_2O_2$ (M + H)⁺: 287.1759.

Acknowledgements

We thank the Ministerio de Educación y Ciencia of Spain (CTQ2004-00649/BQU; CTQ2007-61254/BQU, CTQ2008-01565/BQU), the Junta de Andalucía (FQM-345) and the Swiss National Science Foundation (Bern) for financial support.

Notes and references

- 1 D. H. Dube and C. R. Bertozzi, *Curr. Opinion Chem. Biol.*, 2003, 7, 616; N. Branza-Nichita, A. J. Petrescu, G. Negroiu, R. A. Dwek and S. M. Petrescu, *Chem. Rev.*, 2000, **100**, 4697.
- 2 A. Varki, Glycobiology, 1993, 3, 97; M. Sperandio, FEBS J., 2006, 273, 4377.
- 3 N. Asano, *Glycobiology*, 2003, **102**, 93R; R. A. Dwek, *Chem Rev.*, 1996, **96**, 683; A. D. Elbein and R. J. Molyneux, *Iminosugars as Glycosidase Inhibitors:Nojirimycin and Beyond* (Ed.: A. E. Stütz), Wiley-VCH, 235. Weinheim, 1999, pp. 216–252.
- 4 I. Robina, A. J. Moreno-Vargas, A. T. Carmona and P. Vogel, Curr. Drug. Metabol., 2004, 5, 329.
- 5 A. Giannis, *Angew. Chem., Int. Ed. Engl.*, 1994, 33, 178; H. M. Flowers, *Adv. Carbohydr. Chem. Biochem.*, 1981, 39, 279; T. K. Lindhorst, M. Ludewig and J. Thiem, *J. Carbohydr. Chem.*, 1998, 17, 1131.
- 6 B. Cobucci-Ponzano, M. Mazzone, M. Ròssi and M. Moracci, Biochemistry, 2005, 44, 6331; P. T. Vanhooren and E. J. Vandamme, J. Chem. Technol. Biotechnol., 1999, 74, 479; E. Staudacher, F. Altmann, I. B. Wilson and L. Marz, Biochim. Biophys. Acta, 1999, 1473, 216; L. A. Lasky, Annu. Rev. Biochem., 1995, 63, 113; M. S. Mulligan, J. C. Paulson, S. DeFrees, Z. L. Zheng, J. B. Lowe and P. A. Ward, Nature, 1993, 364, 149; F. Schweizer, Angew. Chem., Int. Ed., 2002, 41, 230.
- 7 P. Compain and O. R. Martin, Bioorg. Med. Chem., 2001, 9, 3077; T. A. Springer and L. A. Lasky, Nature, 1991, 349, 196.
- 8 D. Ayude, J. Fernández-Rodríguez, F. J. Rodríguez-Berrocal, V. S. Martínez-Zorzano, A. de Carlos, E. Gil and M. P. de la Cadena, *Oncology*, 2000, 59, 310.
- J. C. Michals Ki and A. Klein, *Biochim. Biophys. Acta*, 1999, 1455, 69;
 M. C. Glick, V. A. Kothari, A. Liu, L. I. Stoykova and T. F. Scanlin, *Biochimie*, 2001, 83, 743; T. F. Scanlin and M. C. Glick, *Biochim. Biophys. Acta*, 1999, 1455, 241.
- 10 J. Fernández-Rodríguez, D. Ayude, M. P. de la Cadena, V. S. Martínez-Zorzano, A. de Carlos, A. Caride Castro, G. de Castro and F. J. Rodríguez-Berrocal, *Cancer Detect. Prev.*, 2000, 24, 143.
- 11 S. Khunnsook, B. Bean, S. R. McGowan and J. A. Alhadeff, Biol. Reprod., 2003, 68, 709; S. Khunnsook, J. A. Alhadeff and B. Bean, Mol. Hum. Reprod., 2002, 8, 221.
- 12 A. De Raadt, C. W. Ekhart, M. Ebner and A. E. Stütz, *Topics Curr. Chem.*, 1997, **187**, 157; A. Peer and A. Vasella, *Helv. Chim. Acta*, 1999, **82**, 1044; W. Guo, J. Hiratake, K. Ogawa, M. Yamamoto, S.-J. Ma

- and K. Sakata, *Bioorg. Med. Chem. Lett.*, 2001, 11, 467; A. Bordier, P. Compain, O. R. Martin, K. Ikeda and N. Asano, *Tetrahedron: Asymmetry*, 2003, 14, 47; Y. Bleriot, D. Gretzke, T. M. Kruelle, T. D. Butters, R. A. Dwek, R. J. Nash, N. Asano, N. and G. W. J. Fleet, *Carbohydr. Res.*, 2005, 340, 2713; B. Winchester, C. Barker, S. Baines, G. S. Jacob, S. K. Namgoong and G. W. J. Fleet, *Biochem. J.*, 1990, 265, 277.
- 13 G. W. J. Feet, S. K. Namgoong, C. Barker, S. Baines, G. S. Jacob and B. Winchester, B., *Tetrahedron Lett.*, 1989, 30, 4439.
- 14 M. Dubernet, A. Defoin and C. Tarnus, Bioorg. Med. Chem. Lett., 2006, 61, 1172.
- 15 Iminosugars as Glycosidase Inhibitors. Nojirimycin and Beyond, A. E. Stütz, Ed.; Wiley-VCH, 1999, Weinheim, Germany; P. E. Goss, J. Baptiste, B. Fernandes, M. Baker and J. W. Dennis, Cancer Res., 1994, 54, 1450.
- 16 J. R. Wheatley, R. J. Nash, A. A. Watson, R. C. Griffiths, T. D. Butters, M. Muller, D. J. WatKin, D. A. Winkler and G. W. J. Fleet, J. Chem. Soc., Perkin Trans. 1, 1999, 2735.
- 17 A. Dondoni, P. P. Giovannini and D. Perrone, J. Org. Chem., 2002, 67, 7203; C. Asiego, M. S. Pino-Gonzalez and F. J. López-Herrera, Tetrahedron Lett., 2004, 45, 2611; F. Cardona, I. Robina and P. Vogel, J. Carbohydr. Chem., 2000, 19, 555; C. Marquis, F. Cardona, I. Robina, G. Wurth and P. Vogel, Heterocycles, 2002, 56, 181. For a review on aza-disaccharides containing homoazasugar moieties: I. Robina and P. Vogel, Synthesis, 2005, 675.
- 18 C.-H. Wong, L. Provencher, J. A. Porco, Jr., S.-H. Jung, Y.-F. Wang, L. Chen, R. Wang and D. H. Steensma, J. Org. Chem., 1995, 60, 1492; G. W. J. Fleet, N. G. Ramsden and D. R. Witty, Tetrahedron, 1989, 45, 319; J. P. Shilvock, K. Y. Hsia, R. J. Nash, J. D. Lloyd, A. L. Winters, N. Asano and G. W. J. Fleet, Tetrahedron: Asymmetry, 1998, 9, 4157; J. P. Shilvock and G. W. J. Fleet, Synlett, 1998, 554.
- 19 C.-Y. Wu, C.-F. Chang, J. S.-Y. Chen, C.-H. Wong and C.-H. Lin, Angew. Chem., Int. Ed., 2003, 42, 4661; C. W. Ho, Y. N. Lin, C.-F. Chang, S.-T. Li, Y.-T. Wu, C.-Y. Wu, C.-Y., C., C.-F., S.-W. Liu, Y.-K. Li and C.-H. Lin, Biochemistry, 2006, 45, 5695; N. Asano, K. Yasuda, H. Kizu, A. Kato, J.-Q. Fan, R. J. Nash, G. W. J. Fleet and R. J. Molyneux, Eur. J. Biochem., 2001, 268, 35; T. Yamashita, K. Yasuda, H. Kizu, Y. Kameda, A. A. Watson, R. J. Nash, G. W. J. Fleet, G. W. J. and N. Asano, J. Nat. Prod., 2002, 65, 1875.
- 20 D. Diez, M. T. Benitez, I. S. Marcos, N. M. Garrido, P. Basabe and J. G. Urones, *Tetrahedron: Asymmetry*, 2002, 13, 639; D. Diez, M. T. Benitez, I. S. Marcos, N. M. Garrido, P. Basabe and J. G. Urones, *Synlett*, 2001, 655; M. Joubert, A. Defoin, C. Tarnus and J. Streith, *Synlett*, 2000, 1366.
- 21 Y. F. Wang, D. P. Dumas and C.-H. Wong, *Tetrahedron Lett.*, 1993, 34, 403
- 22 L. Espelt, J. Bujons, T. Parella, J. Calveras, J. Joglar, A. Delgado and P. Clapes, Chem.—Eur. J., 2005, 11, 1392.
- 23 C. Chevrier, D. Le Nouën, M. Neuburger, A. Defoin and C. Tarnus, Tetrahedron Lett., 2004, 45, 5363.
- 24 A. Defoin, A. T. Sifferlen, J. Streith, I. Dosbaa and M.-J. Foglietti, Tetrahedron: Asymmetry, 1997, 8, 363; I. Izquierdo, M. T. Plaza, J. A. Tamayo, F. Franco and F. Sanchez-Cantalejo, Tetrahedron, 2008, 64, 4993.
- 25 A. M. Palmer and V. Jager, Eur. J. Org. Chem., 2001, 2547.
- 26 I. Izquierdo, M. T. Plaza, J. A. Tamayo, D. Lo Re and F. Sanchez-Cantalejo, *Synthesis*, 2008, 1373; T. Sifferlen, A. Defoin, J. Streith, D. Le Nouen, C. Tarnus, I. Dosbaa and M. J. Foglietti, *Tetrahedron*, 2000, 56, 971.
- 27 C. Laroche, J.-B. Behr, J. Szymoniak, P. Bertus, C. Schütz, P. Vogel and R. Plantier-Royon, *Bioorg. Med. Chem.*, 2006, **14**, 4047.
- 28 C. Legler, Adv. Carbohydr. Chem. Biochem., 1990, 48, 319; S. J. Charnock, T. D. Spurway, H. Xie, M.-H. Beylot, R. Virden, R. A. J. Warren, G. P. Hazlewood and H. J. Gilbert, J. Biol. Chem., 1998, 273, 32187.
- 29 C.-W. Ho, Y. N. Lin, C.-F. Chang, S.-T. Li, Y.-T. Wu, C.-Y. Wu, C.-F. Chang, S.-W. Liu, Y.-K. Li and C.-H. Lin, *Biochemistry*, 2006, 45, 5695.
- 30 C.-F. Chang, C.-W. Ho, C.-Y. Wu, T.-A. Chao, C.-H. Wong and C.-H. Lin, *Chem. Biol.*, 2004, **11**, 1301.
- 31 For results on α-mannosidases see: S. Gerber-Lemaire, F. Popowycz, E. Rodriguez-Garcia, A. T. Carmona, I. Robina and P. Vogel, *Chem-BioChem*, 2002, 3, 466; S. Gerber-Lemaire, F. Popowycz, E. Rodriguez-Garcia, C. Schuetz, A. T. Carmona, I. Robina and P. Vogel, *ARKIVOC*, 2002, XII, 23; A. T. Carmona, F. Popowycz, S. Gerber-Lemaire, E. Rodriguez-Garcia, C. Schutz, P. Vogel and I. Robina, *Bioorg. Med.*

- Chem., 2003, 11, 4897; F. Popowycz, S. Gerber-Lemaire, E. Rodriguez-Garcia, C. Schutz and P. Vogel, Helv. Chim. Acta, 2003, 86, 1914; F. Popowycz, S. Gerber-Lemaire, C. Schutz and P. Vogel, Helv. Chim. Acta, 2004, 87, 800; C. Saotome, C.-H. Wong and O. Kanie, Chem. Biol., 2001, 8, 1061.
- 32 For results on α-L-fucosidases, see: I. Robina, A. J. Moreno-Vargas, J. G. Fernández-Bolaños, J. Fuentes, R. Demange and P. Vogel, Bioorg. Med. Chem. Lett., 2001, 11, 2555; A. J. Moreno-Vargas, I. Robina, R. Demange and P. Vogel, Helv. Chim. Acta, 2003, 86, 1894. For cyclopentitols, see:; A. Blaser and J. L. Reymond, Org. Lett., 2000, 2, 1733. For piperidines, see:; C.-F. Chang, C.-W. Ho, C.-Y. Wu, T.-A. Chao, C.-H. Wong and C.-H. Lin, Chem. Biol., 2004, 11,
- 33 H. Fiaux, F. Popowycz, S. Faure, C. Schutz, P. Vogel, S. Gerber-Lemaire and L. Juillerat-Jeanneret, J. Med. Chem., 2005, 48,

- 34 For previous communications of this work see: A. J. Moreno-Vargas, A. T. Carmona, F. Mora, P. Vogel and I. Robina, Chem. Commun., 2005, 4949; E. Moreno-Clavijo, A. T. Carmona, A. J. Moreno-Vargas and I. Robina, Tetrahedron Lett., 2007, 48, 159.
- 35 W. H. Pearson, L. Guo and T. M. Jewell, Tetrahedron Lett., 2002, 43,
- 36 S. Vijayasaradhi, J. Singh and A. I. Singh, Synlett, 2000, 110.
- 37 H. H. Jenseb, A. Jensen, R. G. Hazell and M. Bols, J. Chem. Soc., Perkin Trans. 1, 2002, 1190.
- 38 I. Robina, R. P. Gearing, J. G. Buchanan and R. H. Wightman, J. Chem. Soc., Perkin Trans. 1, 1990, 2622; D. K. Thompson, C. N. Hubert and R. H. Wightman, Tetrahedron, 1993, 49, 3827.
- 39 R. Saul, J. P. Chambers, R. J. Molyneux and A. D. Elbein, Arch. Biochem. Biophys., 1983, 221, 593; A. Brandi, S. Cicchi, F. M. Cordero, R. Frignoli, A. Goti, S. Picasso and P. Vogel, J. Org. Chem., 1995, 60,